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LETTER TO THE EDITOR 

Quantum magnetic confinement in a curved two-dimensional 
electron gas 
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t Toshiba Cambridge Research Cenue. 260 Cambridge Science park. Milton Road, Cambridge 
CB4 4WL3, UK 
$ Cavendish Laborato~~, University of Cambnidge. Madingley Road, Cambridge CB3 OHE, 
UK 

Received i2 December 1993 

Abstract. The ability to produce deliberately shaped or curved two-dimensional electron gases 
in semiconductors using recent developments in technology, for example regrowth of 111-V 
semiconductors on panemed or ached substrates, opens the possibility of investigating not only 
the behaviour of electrons in a cwedquasi-two-dimensional spacc and the effects of varying 
that curvature, but also presents a novel way of investigating electron transpon properties in a 
non-uniform transverse high magnetic field. It is shown that a semi-inhnite lwo-dimensional 
electron gas subjected to a non-uniform magnetic held has, in addition to cumt-carrying edge 
states. one-dimensional states which lie within the idterior of the g q  which also have a finite 
dispersion, an effect which may be used to create quantum wires or other smctures. It is also 
shown that, in the absence of a magnetic held, curvmre of the two-dimensional electron gas 
gives rise to a potential variation which is inversely proportional to the square of the radius of 
curvature, an effect which may also be used to confine the electronic motion to one dimension. 

The transport properties of two-dimensional electron gases (ZDEG) subjected to a 
perpendicular magneuc field have been the focus of a great deal of research in recent years 
[1-4]. One particular property of interest is the conductance quantization, which occurs 
as a result of the one-dimensional nature of the conduction channels in such systems, 
and the associated quantum hall effects (QHE), which are thought to arise due to the 
suppression of backscattering [2,3]. Alongside this has been the move towards attainment 
of quantum systems of ever fewer dimensions, namely quantum wires [5,6] and quantum 
dots 171, produced by electrostatic confinement 181. In addition, there has been a growth 
in interest, both theoretical and experimental, in two-dimensional electron transport in non- 
uniform magnetic fields [9-11], produced via the use of e.g. superconductor-semiconductor 
interfaces [12]. 

In this letter a method is introduced by which it is possible to investigate both elechon 
transport in a non-uniform high magnetic field, and the effects of varying, in addition to the 
number of dimensions they have available for motion, the topology of the space in which 
the electrons are confined. This method is illustrated through the use of a simple example 
structure, exhibiting most of the properties of interest of this kind of system, for which 
the dispersion relation is calculated for antisymmetric through to symmetric magnetic field 
variations. 

Production of a non-planar ZDFG can be achieved quite straightforwardly using regrowth 
technology on previously patterned or etched substrates 1131. Using this technique, it is 
possible to produce steps, and virtually any other feature in the 2DEG, of controllable height 
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and width, enabling investigation of electron motion on shaped surfaces. Application of 
a uniform magnetic field to these systems results in a non-uniform transverse magnetic 
field across the 2DEG itself, a technique which offers considerable advantages over current 
suggestions for the production of magnetic field variations since it allows the production of 
magnetic steps, barriers, wells [IO], and a wealth of other field variations of interest, and in 
addition enables the use of a variable direction, variable magnitude field. 

Considering initially the effect of the curvature of the 2DEG, it is of interest to first 
obtain the general Hamiltonian for an electron confined to move within a curved surface of 
thickness d. The expression for an element of length within any surface of finite thickness 
is given by [ 141 

ds2 = dr2  + hi, d x ‘ d x j  i, j = 1, 2 

here T is the co-ordinate normal to the plane, and xt, x, are the two in-plane coordinates. 
The Hamiltonian for an elechon confined to move within this general surface is 

with the confining potential 

Here h = Ihijl, and the eigenstates and eigenvalues of f? are Y and E .  Making the 
substitution 

r , q )  where f =  4& 
1 

*(.xi) = -e( f 
gives the general Hamiltonian for a curved surface to be 

the second term of which would be identically zero in a hue 2D system. The above equation 
is separable, and therefore soluble, if it is assumed that motion normal to the plane is much 
faster than motion along the plane (the adiabatic approximation) as this allows decoupling of 
the two components, giving a Hamiltonian for the in-plane motion, and is clearly physically 
reasonable for the first subband of a 2DEG system. 

The model taken for the curved 2DEG is shown in figure 1 and corresponds to a portion 
of a cylinder joined by two planes, of thickness d. Within the adiabatic approximation, the 
Hamiltonian for the in-plane part of the wavefunction for this system is 

where 1 = Ra! is the coordinate parallel to the bending direction and it has been assumed 
that the walls of the 2DEG are hard. This Hamiltonian is correct to order d2 but cannot be 
used when the radius of curvature becomes comparable with the spatial extent of the radial 



Letrer to the Editor L129 

part of the wavefunction [14]. The last term in the Hamiltonian is the one arising from 
the differentiation of the metric with respect to r ,  and contains the information about the 
curvature of the surface. From this term, it can be seen that the general effect of varying 
the curvature of the space in which electrons move is to produce a change in the potential 
energy, and for the model under discussion gives rise to a potential well in the curved 
region, analogous to a central potentialt. Considering now the additional effect of applying 
a magnetic field at some angle y to the horizontal (see figure l), then the full Hamiltonian 
of the model system may be written 

where the magnetopotential is given, in the Landau gauge, by 

(kkZ + eA$ 
1 

2m* 
Vw=- 

with 

A, = Ba,R{cos(y +a) - cosy} = A , ( y ,  a) 

and 

A, = A, (y ,  am..) - Bapp(ll/ - Ra,,) sin(a,, f y )  

It is assumed that there are no additional potentials in the z direction, such that the z- 
momentum operator may be replaced with its eigenvalue. The Hamiltonian for a curved 
ZDEG subjected to a magnetic field has therefore been reduced to an equation of motion for 
motion parallel to the bending direction. 

on the cylindncal region 

on the planes. 

Figure 1. The model forthe curved 2DEG corresponds to two p h e s  joined by p> of acylinder. 
Mutually orthogonal cwrdinates ( I ,  r. z )  are defined at each point on the surface and the origin 
of (1, r )  is ai the apex of the surface The planes make an angle U- with the horizontal. and 
join smoothly to the cylinder, which has a radius R. 

f'It must be noted at this point that other worken [l5,16] in this field have, using a variely of techniques, obtained 
a potential due to the curvature of the same magnitude as that derived here, however the sign of the potential is a 
point of disagreement, we follow here the method described in [14]. 
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The solutions to the equation of motion for an antisymmetric linear variation in the 
magnetic field ( E  = k&y) across a semi-infinite ZDEG have recently been studied in 
some detail 191, so for simplicity, and for ease of comparison, the case of y = 0 will be 
treated first, i.e. a magnetic field applied parallel to the x-axis to produce a antisymmetric 
field variation across the zDU; (see figure 1). However, it must be noted that the system 
discussed here is more complicated, and in a sense more general than that, for a flat ZDEG, 
discussed in [9], in that there is also a variation in the magnetic field gradient across the 
ZDEG, and the field itself can be applied at any angle, such that an antisymmetric field 
variation is rather a special case. 

For the case y = 0 the resulting magnetopotential will be either a single potential well 
centred on 10 = 0, for negative kz> or a double well potential, the well centres defined by 

lo = RCOS-' 1 - - on the cylinder ( e i a t R )  

or 
fik, + eBappR(costr,, + ama sinn-) 

lo = f on the planes 
sina,, 

for positive kz, i.e. negative velocity states are centred on the apex of the curved ZDEG, and 
positive velocity states are centred symmetrically either side of the apex, moving towards the 
edge as k, increases. The positive velocity states are essentially drifting Landau level states, 
or edge states (depending upon their location), whereas the central, negative velocity states 
have no correspondence to any state in the uniform field system. Note that, depending upon 
the values of R and a,,, there is also clearly the possibility of zero-velocity (Landau state) 
formation on the planar regions, if the region of constant magnetic field is wide enough to 
contain a cyclotron orbit. 

Equation (1) has been solved numerically for a 2000 A-wide 2DEG formed in GaAs, 
assuming an effective mass of 0.067 me to obtain the dispersion relations of the form shown 
in figure 2. The dispersion is free-electron-like for negative k, (apex) states and large positive 
k, (edge) states. For positive kL the double well shape of the magnetopotential results in the 
formation of linear combinations (symmetric and antisymmetric) of drifting Landau level 
states until the barrier between the wells is sufficiently high andlor wide that the drifting 
states become degenerate once more. Following 191, the approximate analytic expressions 
for the energy and width of the drifting degenerate states, i.e. the states defined by a double 
well potential centred on 510 are, 

AeBo sin(lo/R) 
m* 

E = (n + f) 

giving an analytic expression for the position dependence of the magnetic length 

It is important to note that, although the magnetic field is creating onedimensional charge- 
carrying states, there is no any overall drift velocity within the system until a voltage is 
applied. 
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Figure 2. The dispersion relations show the subbands produced as a result of application of a 
horizontal ( y  = 0) magnetic field to a 2 x 0  in GaAs (see text), of the form shown in figure 1. 
Referring to figure 1, the angle which the planes make with the horizontal is taken to be45'. Both 
sets, (U) and (b). of dispersion relations were calculated at an applied field of 10 T (continuous 
line) and 5 T (dotted line). Regions of negative velocity correspond to states centred on the 
apex, and regions of positive velocity correspond to states centred on the planes. Note that 
the velocity can be negative for small positive 4,  due to t h ~  presence ofJhe magnetic vector 
potential. As the radius of curvature is increased fmm 300 A (a) to 700 A (b), the dispersion 
across the whole mEG increases, and the zerorelocity (flat) regions of the dispersion curves are 
reduced or disappear. Additionally, increasing the magnetic field increases the range of kz for 
which the dispersion curves are Rat, due tu the reduction in the magnetic length 
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Changing the angle of the applied field lifts the degeneracy of the system, resulting in 
dispersion relations of the form shown in figure 3 (calculated for the same ZDEG system as 
in figure 2). If the field is applied parallel to the y axis ( y  = z/2), the dispersion relation 
obtained is similar in form to a QHE sample, in that it is symmetric about k,  = 0, however, 
for this system there are two additional sets of current carrying states, one on each side 
of 1 = 0, with velocities opposing those of the skipping orbits (which travel in opposite 
directions at opposite edges of this system). 

At high magnetic fields, in all the dispersion relations shown, the effect of the bending 
potential is negligible: the well produced is of order meV or less (in GaAs) in comparison 
with a subband separation of order 10 meV, however, at low fields it will become more 
important. As the radius of curvature is decreased the adiabatic approximation will 
eventually break down, but it is anticipated that the potential produced by the curvature 
will still be an attractive one, and in this regime will probably be significant even at higher 
magnetic fields, resulting in electrons ‘falling’ towards the apex of the structure, producing 
a wire, or a superlanice-like series of wires for a series of curved ZDEG, even in the absence 
of a magnetic field. 

Transport in a semi-infinite ZDEG subjected to a uniform magnetic field, and in the regime 
of quantized resistance, is normally discussed in the context of edge channels, since they are 
the only current-carrying states. Scattering in such systems is only of importance if it results 
in a change of direction for the electron, that is if the electron is backscattered, which, for a 
uniform magnetic field, would mean that the electron would have to be scattered from one 
edge of the sample to the other. The quantum hall regime is one in which backscattering is 
entirely absent from the system, due to a combination of the strength of the magnetic field 
and the physical separation of the current-carrying (edge) channels, resulting in the flow of 
dissipationless current, dissipation occurs only when the Fermi energy passes through the 
Landau levels. However, for the case of a non-uniform magnetic field, there are current 
carrying one-dimensional channels located throughout the structure, such that the transport 
properties will be strongly dependent on the precise shape of the ZDEG, since this determines 
the form of the dispersion, and the location of the Fermi energy, as this determines which 
states are involved in the conduction process. For example, if the Fermi energy lies such 
that it intercepts the dispersion relation at values of k, corresponding to states located at the 
apex and edges of the curved ZDEG, then only these states are involved in the conduction 
process. If a current is driven in the direction using the edge states, then backscattering 
(to the apex) will be suppressed for a wide enough sample, and/or a high enough magnetic 
field in precisely the same way as in the QHE. For a fixed Fermi energy, it is anticipated 
that the onset of scattering will occur at a different magnetic field if the current is passed 
in the opposite direction, using the apex states, since the width of these states is different 
from that of the edge states, and in addition, the scattering rates, due to impurities, at the 
two locations would be expected to be quite different. Driving a current using apex or edge 
states should not result in a Hall voltage, since although internally there are Hall fields, they 
are equal and opposite between the apex and the two edges for a symmetric system due to 
the time-reversal asymmetry. 

The non-uniformity in the magnetic field results in a spatial dependence in the magnetic 
length, and therefore a spatial dependence in the scattering and backscattering probabilities. 
Accordingly, as the Fermi energy is reduced, (see figure 2) and the current is carried by 
both edge states and states within the interior of the ZDEG, at some point before the bottom 
of the subband is reached, there will be the onset of backscattering between the interior 
states and the apex states. Finally, as the Fermi energy approaches the bottom of the first 
subband, the current carrying states in this regime are all centred on the apex, and transport 
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Figure 3. The dispersion relations shown are for the same System as for figure 2 with the radius 
of cwatnre fixed at 700 A and the magnetic field fixed at 10 T (a) for a field applied at an 
angle of 18', and (b) for a field applied at an angle of 90°. In (a) it is clearly see that changing 
the angle of the applied field removes the degeneracy in the system, producing antinossings 
in the dispersion relalion as a result. In (b), the situation is very sinular to that found in the 
quantum hall effect, the difference being that the dispersion relation is nM entirely Rat in the 
range of kz between the two set of edge states, rather there are some additional current *urying 
states. 
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is completely one-dimensional, such that it should be possible to use this system to create 
an isolated, magnetically confined quantum wire. Note that, reduction in the geometrical 
symmetry of the structure also has the effect of lifting the degeneracy in the dispersion 
relation, and such systems may be used to produce non-centrally located quantum wires. 

It is also of interest to consider what would happen if the (geometric) confinement in 
the 1 direction is removed, such that transport in the I direction can be investigated, for 
example under the influence of magnetic steps, wells or still more complicated structures, 
such as the barriedwell combination which would arise for the system discussed in this 
letter. 

In summary, a novel method for investigating two-dimensional elecwon transport in 
curved space, and in a non-uniform and high magnetic field has been outlined. This method 
allows investigation and exploitation of the one dimensional structures produced as a result 
of the application of the magnetic field, and of the curvature of the ZDEG. Magnetic and 
topological confinement of this form can be combined with electrostatic confinement to 
create numerous, even more exotic, two-, one- and zero-dimensional structures. 

We would like to thank Professor D E  Khmelnitskii and Dr A Kurobe for useful discussions. 

References 

von Kiitzing K, Dorda G and Pepper M 1980 Phys. Rev. Len. 45 494 
Buuiker M 1988a Pkys. Rev. B 38 9375 
Martin T and Feng S 1991b Phys. Rev. B 44 9084 
van Wees B 1, Willems E M M, H a "  C I P M, B e e ~ k k e r  C W 1, van Houten H, Williamson J G, 

van Wees B J. van Houten H, Beenakker C W J, Williamson J G, van der Marel D and Foxon C T 1988 

Wharam D A, Thomton T 1, Newbury R, Pepper M, Ahmed H, Frost J E F, Hash D G, Peacock D C, 

Smith C G. Pep, M , Newbury R, Ahmed H, Peacock D C, Frost I E F and Jones G A C 1989 3, Phvr. 

Foxon C T and Harris J J 1989 Phys. Rev. Len. 62 1181 

Phys. Rev. Lerr. 60 848 

Ritchie D A and Jones 0 A C 1988 3. Phys. C: Solid Srare Pkys. 21 L209 

C: Solid SGi Pkys. 1 6763 
Thomton T J, Pepper M. Ahmed H, Andrews D and Davies G J 1986 Phvs. Rev. Le;:. 56 1198 
Muller I E 1992 Phys. Rev. B 68 385 
Peeten F M and Matulis A 1993 Phys. Rev. B 48 15 166 
Brey Land Ferdg H A 1993-1 Phys. Rev. B 47 15961 
Bending S J, von Klitzing K and Plwg K 1990 Phys. Rev. Leu. 65 1060 
Burroughes J H, Leadbeater M L, Grimshaw M P, Evans R I, Ritchie D A, Jones G A C and Pepper M 

Ikegami M and Nagaoka Y 1991 Prop. Theor. Phys. Supp. 106 235 
da Costa R C T 1981 Phyr. Rev. A 23 1982 
Ogawa N, Fujii K and Kobushukin A 1990 Pmg. Theor. Phy .  83 894 

1993 Appl. Pkys. Lefr. 63 2219 


